Abstract-Subspace clustering is one of the active research problem associated with high-dimensional data. Here some of the standard techniques are reviewed to investigate existing methodologies. Although, there have been various forms of research techniques evolved recently, they do not completely mitigate the problems pertaining to noise sustainability and optimization of clustering accuracy. Hence, a novel technique called as Robust Modeling of Subspace Clustering (RMSC) presented to solve the above problem. An analytical research methodology is used to formulate two algorithms for computing outliers and for extracting elite subspace from the highdimensional data inflicted by different forms of noise. RMSC was found to offer higher accuracy and lower error rate both in presence of noise and absence of noise over high-dimensional data.