Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Digital image processing is at the base of everyday applications aiding humans in several fields, such as underwater monitoring, analysis of cultural heritage drawings, and medical imaging for computer-aided diagnosis. The starting point of all such application regards the image enhancement step. A desirable image enhancement step should simultaneously standardize the illumination in the image set, possibly removing bad or not-uniform illumination effects, and reveal all hidden details. In 2002, a successful perceptual image enhancement model, the automatic color equalization (ACE) algorithm, was proposed, which mimics the color and contrast adjustment of the human visual system (HVS). Given its widespread usage, its correlation with the HVS, and since it is easily implementable, we propose a scoping review to identify and classify the available evidence on ACE, starting from the papers citing the two funding papers on the algorithm. The aim of this work is the identification of what extent and in which ways ACE may have influenced the research in the color imaging field. Thanks to an accurate process of papers tagging, classification, and validation, we provide an overview of the main application domains in which ACE was successfully used and of the different ways in which this algorithm was implemented, modified, used, or compared.
Digital image processing is at the base of everyday applications aiding humans in several fields, such as underwater monitoring, analysis of cultural heritage drawings, and medical imaging for computer-aided diagnosis. The starting point of all such application regards the image enhancement step. A desirable image enhancement step should simultaneously standardize the illumination in the image set, possibly removing bad or not-uniform illumination effects, and reveal all hidden details. In 2002, a successful perceptual image enhancement model, the automatic color equalization (ACE) algorithm, was proposed, which mimics the color and contrast adjustment of the human visual system (HVS). Given its widespread usage, its correlation with the HVS, and since it is easily implementable, we propose a scoping review to identify and classify the available evidence on ACE, starting from the papers citing the two funding papers on the algorithm. The aim of this work is the identification of what extent and in which ways ACE may have influenced the research in the color imaging field. Thanks to an accurate process of papers tagging, classification, and validation, we provide an overview of the main application domains in which ACE was successfully used and of the different ways in which this algorithm was implemented, modified, used, or compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.