Defect detection on steel surfaces with complex textures is a critical and challenging task in the industry. The limited number of defect samples and the complexity of the annotation process pose significant challenges. Moreover, performing defect segmentation based on accurate identification further increases the task’s difficulty. To address this issue, we propose VQGNet, an unsupervised algorithm that can precisely recognize and segment defects simultaneously. A feature fusion method based on aggregated attention and a classification-aided module is proposed to segment defects by integrating different features in the original images and the anomaly maps, which direct the attention to the anomalous information instead of the irregular complex texture. The anomaly maps are generated more confidently using strategies for multi-scale feature fusion and neighbor feature aggregation. Moreover, an anomaly generation method suitable for grayscale images is introduced to facilitate the model’s learning on the anomalous samples. The refined anomaly maps and fused features are both input into the classification-aided module for the final classification and segmentation. VQGNet achieves state-of-the-art (SOTA) performance on the industrial steel dataset, with an I-AUROC of 99.6%, I-F1 of 98.8%, P-AUROC of 97.0%, and P-F1 of 80.3%. Additionally, ViT-Query demonstrates robust generalization capabilities in generating anomaly maps based on the Kolektor Surface-Defect Dataset 2.