2023
DOI: 10.48550/arxiv.2301.01867
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Unsupervised High Impedance Fault Detection Using Autoencoder and Principal Component Analysis

Abstract: Detection of high impedance faults (HIF) has been one of the biggest challenges in the power distribution network. The low current magnitude and diverse characteristics of HIFs make them difficult to be detected by over-current relays. Recently, data-driven methods based on machine learning models are gaining popularity in HIF detection due to their capability to learn complex patterns from data. Most machine learning-based detection methods adopt supervised learning techniques to distinguish HIFs from normal … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?