Unsupervised learning-based structural analysis: Search for a characteristic low-dimensional space by local structures in atomistic simulations
Ryo Tamura,
Momo Matsuda,
Jianbo Lin
et al.
Abstract:Owing to the advances in computational techniques and the increase in computational power, atomistic simulations of materials can simulate large systems with higher accuracy. Complex phenomena can be observed in such state-of-the-art atomistic simulations. However, it has become increasingly difficult to understand what is actually happening and mechanisms, for example, in molecular dynamics (MD) simulations. We propose an unsupervised machine learning method to analyze the local structure around a target atom… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.