2016
DOI: 10.1609/aaai.v30i1.9818
|View full text |Cite
|
Sign up to set email alerts
|

Unsupervised Learning of HTNs in Complex Adversarial Domains

Abstract: While Hierarchical Task Networks are frequently cited as flexible and powerful planning models, they are often ignored due to the intensive labor cost for experts/programmers, due to the need to create and refine the model by hand. While recent work has begun to address this issue by working towards learning aspects of an HTN model from demonstration, or even the whole framework, the focus so far has been on simple domains, which lack many of the challenges faced in the real world such as imperfect information… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 4 publications
0
0
0
Order By: Relevance