Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural 2009
DOI: 10.3115/1690219.1690231
|View full text |Cite
|
Sign up to set email alerts
|

Unsupervised learning of narrative schemas and their participants

Abstract: We describe an unsupervised system for learning narrative schemas, coherent sequences or sets of events (arrested(POLICE,SUSPECT), convicted( JUDGE, SUSPECT)) whose arguments are filled with participant semantic roles defined over words (JUDGE = {judge, jury, court}, POLICE = {police, agent, authorities}). Unlike most previous work in event structure or semantic role learning, our system does not use supervised techniques, hand-built knowledge, or predefined classes of events or roles. Our unsupervised learnin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
692
0
3

Year Published

2012
2012
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 445 publications
(721 citation statements)
references
References 17 publications
2
692
0
3
Order By: Relevance
“…Kuna kasutan suuliselt esitatud jutustusi, tundus otstarbekas käsitleda neid kui narratiivide ahelaid (osaliselt järjestatud narratiivsete juhtumite võrgustik, millel on ühine tegelane ja mille narratiivne sündmus ja osavõtjate korteež esindab tüüpsündmusi ja tendentse (Chambers & Jurafsky 2008), tüüpsünd-muste filtreerimist (valik, saabumine, uue keskkonnaga kokkupuuted, kohanemine)). Mõnevõrra sarnaneb see ka isiklike kogemusjuttude (isikujuttude) uurija William Labovi mudeliga, kelle arvates on narratiiviahela iga narratiiv konstrueeritud kõige jutustamistväärivamast sündmusest: see tähendab, et sündmus on üldine ja tal on kõige laiemad järelmid osavõtjate turvalisuse ja heaolu suhtes.…”
Section: Teoreetilisi Lähenemisiunclassified
“…Kuna kasutan suuliselt esitatud jutustusi, tundus otstarbekas käsitleda neid kui narratiivide ahelaid (osaliselt järjestatud narratiivsete juhtumite võrgustik, millel on ühine tegelane ja mille narratiivne sündmus ja osavõtjate korteež esindab tüüpsündmusi ja tendentse (Chambers & Jurafsky 2008), tüüpsünd-muste filtreerimist (valik, saabumine, uue keskkonnaga kokkupuuted, kohanemine)). Mõnevõrra sarnaneb see ka isiklike kogemusjuttude (isikujuttude) uurija William Labovi mudeliga, kelle arvates on narratiiviahela iga narratiiv konstrueeritud kõige jutustamistväärivamast sündmusest: see tähendab, et sündmus on üldine ja tal on kõige laiemad järelmid osavõtjate turvalisuse ja heaolu suhtes.…”
Section: Teoreetilisi Lähenemisiunclassified
“…Our previous work on modeling contingency relations in film scripts data compared Causal Potential to methods used in previous work: Bigram event models (Manshadi et al, 2008) and Pointwise Mutual Information (PMI) (Chambers and Jurafsky, 2008) and the evaluations showed that CP obtains better results . In this work, we use CP for inducing contingency relation between events and apply three other models as baselines for comparison: Event-Unigram.…”
Section: Baseline Methodsmentioning
confidence: 99%
“…Though many early AI systems employed hand-encoded scripts, more recent work has attempted to induce scripts with automatic and scalable techniques. In particular, several related techniques approach the problem of script induction as one of learning narrative chains from text corpora (Chambers and Jurafsky, 2008;Chambers and Jurafsky, 2009;Jans et al, 2012;Pichotta and Mooney, 2014). These statistical approaches have focused on open-domain script acquisition, in which a large number of scripts may be learned, but the acquisition of any particular set of scripts is not guaranteed.…”
Section: Introductionmentioning
confidence: 99%
“…Several followup papers introduce variations and improvements on this original model for learning narrative chains (Chambers and Jurafsky, 2009;Jans et al, 2012;Pichotta and Mooney, 2014). It is from this body of work that we borrow techniques to apply to the Dinners from Hell dataset.…”
Section: Introductionmentioning
confidence: 99%