Cyanobacteria of the genera Synechococcus and Prochlorococcus are important contributors to photosynthetic productivity in the open ocean. The discovery of genes (psbA, psbD) that encode key photosystem II proteins (D1, D2) in the genomes of phages that infect these cyanobacteria suggests new paradigms for the regulation, function and evolution of photosynthesis in the vast pelagic ecosystem. Reports on the prevalence and expression of phage photosynthesis genes, and evolutionary data showing a potential recombination of phage and host genes, suggest a model in which phage photosynthesis genes help support photosynthetic activity in their hosts during the infection process. Here, using metagenomic data in natural ocean samples, we show that about 60% of the psbA genes in surface water along the global ocean sampling transect are of phage origin, and that the phage genes are undergoing an independent selection for distinct D1 proteins. Furthermore, we show that different viral psbA genes are expressed in the environment.