Unsupervised lung lesion detection on FDG-PET/CT images by deep image transformation-based 2.5-dimensional local anomaly detection
Arata Segawa,
Mitsutaka Nemoto,
Hayato Kaida
et al.
Abstract:We propose an unsupervised method to detect lung lesions on FDG-PET/CT images based on deep image anomaly detection using 2.5-dimensional (2.5D) image processing. This 2.5D processing is applied to preprocessed FDG-PET/CT images without image patterns other than lung fields. It enhances lung lesions by parallel analysis of axial, coronal, and sagittal FDG-PET/CT slice images using multiple 2D U-Net. All the U-Nets are pretrained by 95 cases of normal FDG-PET/CT images having no lung lesions and used to transfo… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.