2022
DOI: 10.48550/arxiv.2205.05279
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Unsupervised machine learning for physical concepts

Abstract: In recent years, machine learning methods have been used to assist scientists in scientific research. Human scientific theories are based on a series of concepts. How machine learns the concepts from experimental data will be an important first step. We propose a hybrid method to extract interpretable physical concepts through unsupervised machine learning. This method consists of two stages. At first, we need to find the Betti numbers of experimental data. Secondly, given the Betti numbers, we use a variation… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 47 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?