Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Success in software projects is now an important challenge. The main focus of the engineering community is to predict software defects based on the history of classes and other code elements. However, these software defect prediction techniques are effective only as long as there is enough data to train the prediction model. To mitigate this problem, cross-project defect prediction is used. The purpose of this research investigation is twofold: first, to replicate the experiments in the original paper proposal, and second, to investigate other settings regarding defect prediction with the aim of providing new insights and results regarding the best approach. In this study, three composite algorithms, namely AvgVoting, MaxVoting and Bagging are used. These algorithms integrate multiple machine classifiers to improve cross-project defect prediction. The experiments use pre-processed methods (normalization and standardization) and also feature selection. The results of the replicated experiments confirm the original findings when using raw data for all three methods. When normalization is applied, better results than in the original paper are obtained. Even better results are obtained when feature selection is used. In the original paper, the MaxVoting approach shows the best performance in terms of the F-measure, and BaggingJ48 shows the best performance in terms of cost-effectiveness. The same results in terms of F-measure were obtained in the current experiments: best MaxVoting, followed by AvgVoting and then by BaggingJ48. Our results emphasize the previously obtained outcome; the original study is confirmed when using raw data. Moreover, we obtained better results when using preprocessing and feature selection.
Success in software projects is now an important challenge. The main focus of the engineering community is to predict software defects based on the history of classes and other code elements. However, these software defect prediction techniques are effective only as long as there is enough data to train the prediction model. To mitigate this problem, cross-project defect prediction is used. The purpose of this research investigation is twofold: first, to replicate the experiments in the original paper proposal, and second, to investigate other settings regarding defect prediction with the aim of providing new insights and results regarding the best approach. In this study, three composite algorithms, namely AvgVoting, MaxVoting and Bagging are used. These algorithms integrate multiple machine classifiers to improve cross-project defect prediction. The experiments use pre-processed methods (normalization and standardization) and also feature selection. The results of the replicated experiments confirm the original findings when using raw data for all three methods. When normalization is applied, better results than in the original paper are obtained. Even better results are obtained when feature selection is used. In the original paper, the MaxVoting approach shows the best performance in terms of the F-measure, and BaggingJ48 shows the best performance in terms of cost-effectiveness. The same results in terms of F-measure were obtained in the current experiments: best MaxVoting, followed by AvgVoting and then by BaggingJ48. Our results emphasize the previously obtained outcome; the original study is confirmed when using raw data. Moreover, we obtained better results when using preprocessing and feature selection.
The technique of software defect prediction aims to assess and predict potential defects in software projects and has made significant progress in recent years within software development. In previous studies, this technique largely relied on supervised learning methods, requiring a substantial amount of labeled historical defect data to train the models. However, obtaining these labeled data often demands significant time and resources. In contrast, software defect prediction based on unsupervised learning does not depend on known labeled data, eliminating the need for large‐scale data labeling, thereby saving considerable time and resources while providing a more flexible solution for ensuring software quality. This paper conducts software defect prediction using unsupervised learning methods on data from 16 projects across two public datasets (PROMISE and NASA). During the feature selection step, a chi‐squared sparse feature selection method is proposed. This feature selection strategy combines chi‐squared tests with sparse principal component analysis (SPCA). Specifically, the chi‐squared test is first used to filter out the most statistically significant features, and then the SPCA is applied to reduce the dimensionality of these significant features. In the clustering step, the dot product matrix and Pearson correlation coefficient (PCC) matrix are used to construct weighted adjacency matrices, and a clustering overlap method is proposed. This method integrates spectral clustering, Newman clustering, fluid clustering, and Clauset–Newman–Moore (CNM) clustering through ensemble learning. Experimental results indicate that, in the absence of labeled data, using the chi‐squared sparse method for feature selection demonstrates superior performance, and the proposed clustering overlap method outperforms or is comparable to the effectiveness of the four baseline clustering methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.