2012
DOI: 10.1108/02635571211204272
|View full text |Cite
|
Sign up to set email alerts
|

Unsupervised neural networks approach for understanding fraudulent financial reporting

Abstract: PurposeCreditor reliance on accounting‐based numbers as a persistent and traditional standard to assess a firm's financial soundness and viability suggests that the integrity of financial statements is essential to credit decisions. The purpose of this paper is to provide an approach to explore fraudulent financial reporting (FFR) via growing hierarchical self‐organizing map (GHSOM), an unsupervised neural network tool, to help capital providers evaluate the integrity of financial statements, and to facilitate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
11
0
1

Year Published

2013
2013
2023
2023

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 26 publications
(12 citation statements)
references
References 43 publications
0
11
0
1
Order By: Relevance
“…The GHSOM is a dynamic, multilayer hierarchical and non-fixed structure developed to overcome the major limitations of classical SOM (Rauber et al 2002;Kohonen, 2001) and can generate more detailed clustering than SOMs. Because of their flexibility, GHSOMs have been implemented in many domains, like web mining (Soriano-Asensi et al 2008), data mining (Huang et al 2012;Rauber et al 2002), flow pattern recognition (Tsui and Wu, 2012), forecasting (Guo et al, 2011;Hsu et al 2009;Lu and Wang 2010) etc.…”
Section: Selecɵng Independent and Dependent Variablesmentioning
confidence: 99%
“…The GHSOM is a dynamic, multilayer hierarchical and non-fixed structure developed to overcome the major limitations of classical SOM (Rauber et al 2002;Kohonen, 2001) and can generate more detailed clustering than SOMs. Because of their flexibility, GHSOMs have been implemented in many domains, like web mining (Soriano-Asensi et al 2008), data mining (Huang et al 2012;Rauber et al 2002), flow pattern recognition (Tsui and Wu, 2012), forecasting (Guo et al, 2011;Hsu et al 2009;Lu and Wang 2010) etc.…”
Section: Selecɵng Independent and Dependent Variablesmentioning
confidence: 99%
“…Beneish (1997) gebruikt daarnaast het percentage aandelen van het management als variabele voor het detecteren van manipulatie van de Generally Accepted Accounting Principles (GAAP). Verschillende onderzoekers ontwikkelden modellen met financiële ratio's, die een verhouding tussen twee waardes uit de jaarrekening weergeven, voor het detecteren van indicaties van fraude in jaarverslagen (Hoogs et al 2007;Huang et al 2012;Kaminski et al 2004;Perols 2011;Ravisankar et al 2011). Grove and Basilisco (2008) tonen aan dat de financiële informatie alleen niet voldoende is om indicaties van fraude op te sporen.…”
Section: Fraudedetectie Door Middel Van Management-en Financiële Infounclassified
“…Ravisankar et al (2011) were able to detect fraud in the financial statements of Chinese companies by applying several machine learning techniques with financial ratio's as input. Huang et al (2012) developed a neural network approach using financial statement variables to aid credit providers in assessing the reliability of Taiwanese financial statements. Their model provides the risk indicators that need further investigation.…”
Section: Management and Financial Information To Automatically Detectmentioning
confidence: 99%
“…The newest and popular stateof-the-art machine learning technique is deep learning. Deep learning models use neural networks containing more than one hidden layer, opposed to the neural networks popular for experimentation with financial information to detect fraud (Green and Choi, 1997;Fanning and Cogger, 1998;Bhattacharya et al, 2011;Huang et al, 2012). The deep learning models are successfully used for various types of text analysis research tasks.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation