Abstract:In this study, we explore the use of deep convolutional neural networks (DCNNs) in visual place classification for robotic mapping and localization. An open question is how to partition the robot's workspace into places to maximize the performance (e.g., accuracy, precision, recall) of potential DCNN classifiers. This is a chicken and egg problem: If we had a welltrained DCNN classifier, it is rather easy to partition the robot's workspace into places, but the training of a DCNN classifier requires a set of pr… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.