2019
DOI: 10.1109/access.2019.2953280
|View full text |Cite
|
Sign up to set email alerts
|

Unsupervised Region Attention Network for Person Re-Identification

Abstract: As supervised person re-identification (Re-Id) requires massive labeled pedestrian data and it is very difficult to collect sufficient labeled data in reality, unsupervised Re-Id approaches attract much more attention than the former. Existing unsupervised person Re-Id models learn global features of pedestrian from whole images or several constant patches. These models ignore the difference of each region in the whole pedestrian images for feature representation, such as occluded and pose invariant regions, a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 42 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?