2024
DOI: 10.52953/ctfy7896
|View full text |Cite
|
Sign up to set email alerts
|

Unsupervised representation learning for BGP anomaly detection using graph auto-encoders

Kevin Hoarau,
Pierre Ugo Tournoux,
Tahiry Razafindralambo

Abstract: The Border Gateway Protocol (BGP) is crucial for the communication routes of the Internet. Anomalies in BGP can pose a threat to the stability of the Internet. These anomalies, caused by a variety of factors, can be challenging to detect due to the massive and complex nature of BGP data traces. Various machine learning techniques have been employed to overcome this issue. The traditional approach involves the extraction of ad hoc features, which, although effective, results in a significant loss of information… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?