Background: the considerable time consumption, query retrieval difficulty and reduced retrieval rate. Still remaining challenges in Content-based image retrieval.Methods: in this work, we propose a pre-processing method that uses a Gaussian filter to improve quality by reducing image noise. An effective feature extraction method for in presented to extracted texture help color co-occurrence feature (CCF), color and shape features such as area and diameters. The colors features are extracted by means of a grey-level co-occurrence matrix and bit pattern. Extracting these features will enhance the image retrieval accuracy. With the use of a novel multi-SVM classifier, classification is performed and image retrieval is completed effectively.Results: performance measures, namely, precision, recall, error rate, correct rate, and retrieval rate, are computed. The proposed methodology produces superior results on these measures and exhibits an effective retrieval rate of approximately 94.92%; therefore, our technique is more efficient than existing MRED and MALP methods.Index Terms-Pre-processing, feature extraction, novel Multi-SVM classifier, color co-occurrence feature (CCF), grey level co-occurrence feature (GLCM), bit pattern feature (BPF).