For years, cold plasma processing has been used as a non-thermal technology in industries such as food. As interfacial properties of protein play a remarkable role in many processes, this study investigates the effect of cold plasma on the foaming and interfacial behavior of WPI. The objective of this study is to evaluate the effect of different gases (air, 1:1 argon–air mixture, and sulfur hexafluoride (SF6)) used in low-pressure cold plasma (VCP) treatments of whey protein isolate (WPI) on the surface and foaming behavior of aqueous WPI solutions. Dynamic surface dilational elasticity, surface tension isotherms, surface layer thickness, and the foamability and foam stability were investigated in this study. VCP treatment did not significantly affect the adsorption layer thickness. However, an increase in induction time, surface pressure equilibrium value, and aggregated size is observed after SF6VCP treatment, which can be attributed to the reaction of WPI with the reactive SF6 species of the cold plasma. The surface dilational elastic modulus increased after VCP treatment, which can be related to the increased mechanical strength of the protein layer via sulfonation and aggregate formation. VCP treatment of WPI increases the foam stability, while the average diameter of foam bubbles and liquid drainage in the foam depends on the gas used for the cold plasma.