To refer to metabolomics as a new field is injustice to ancient doctors who used ants to diagnose the patients of diabetes having glycosuria. Measuring the levels of molecules in biological fluids believing them to be the representatives of biochemical pathways of carbohydrates, fats, proteins, nucleic acids or xenobiotic metabolism and deciphering meaningful data from it is what can be called as metabolomics, just as high glucose in urine suggests diabetes mellitus. Genomics, epigenetics, proteomics, transcriptomics finally converge to metabolomics, which are the signatures of mechanisms of bodily processes which is why understanding this science can have many applications. Just as a heap of stones does not make a house, having data of metabolite levels does not make it a science. Analyzing this data would help us in constructing biochemical pathways and their interactions. Analyzing the changes caused by a drug in the metabolite levels would help us in deriving the mechanisms by which the drug acts. Comparing metabolite levels in diseased with non-diseased, good-responders with poor-responders to a particular drug can help in identifying new markers of a disease or response to a drug respectively. Also, metabolite levels of an endogenous substrate can tell us the status of a person's metabolizing enzymes and help in drug dose titration. Generating hypothesis by identifying the new molecular markers and testing their utility in clinics seems to be the most promising approach in future. This review narrates the modes of quantifying and identifying metabolome, its proposed applications in diagnosis, monitoring and understanding the diseases and drug responses. We also intend to identify hindrances in using metabolomics in clinical studies or experiments.