Glass transition temperatures (Tg) of carbohydrate mixtures consisting of only one monomer and glycosidic binding type (aldohexose glucose, α1-4-glycosidic bonded) were studied by differential scanning calorimetry (DSC). The aim of this work was to systematically assess the predictability of Tg of anhydrous binary and ternary sugar mixtures focusing on the components Tg, molecular chain length, and shape. Binary systems were investigated with glucose as a monosaccharide and its linear di-, tri-, tetra-, penta-, hexa-, and heptasaccharides. Additionally, the Tg of ternary carbohydrate systems prepared with different glucose/maltose/maltotriose mass fractions were studied to evaluate the behavior of more complex mixtures. An experimental method to prepare fully amorphized, anhydrous mixtures were developed which allows the analysis of mixtures with strongly different thermodynamic pure-component properties (Tg, melting temperature, and degradation). The mixtures’ Tg is systematically underestimated by means of the Couchman–Karasz model. A systematic, sigmoidal deviation behavior from the Gordon–Taylor model could be found, which we concluded is specific for the investigated glucopolymer mixtures. At low concentrations of small molecules, the model underestimates Tg, meeting the experimental values at about equimolarity, and overestimates Tg at higher concentrations. These deviations become more pronounced with increasing Tg differences and were explained by a polymer mixture-specific, nonlinear plasticizing/thermal volume expansion effect.