In 1998, we published a paper (Fleming et.al, 1998) describing some aspects of Ishikawa endometrial epithelial cell differentiation from monolayer cells into cells forming fluid-filled hemispheres called domes. The process begins with the dissolution of membranes within discrete regions of the monolayer. Nuclei from fused cells aggregate and endogenous biotin in particulate structures assumed to be mitochondria increase throughout the resulting syncytium. Endogenous biotin is also the distinguishing feature of a membrane that surrounds aggregates of multiple nuclei in a structure called a mitonucleon. The current paper includes additional observations on structural changes accompanying Ishikawa differentiation. Vacuoles form in the heterochromatin of the mitonucleon and within the biotin-containing double membrane surrounding heterochromatin. With the formation of vacuoles, the mitonucleon can be seen to rise along with the apical membrane of the syncytium in which it formed. The small vacuoles that form within the heterochromatin result in structures similar to “cells with optically clear nuclei” found in some cancers. The second larger vacuole that forms within the membrane surrounding the heterochromatin transforms the cell profile to one that resembles “signet ring” cells also observed in some cancers. Eventually the membrane surrounding the massed heterochromatin, generated three to four hours earlier, is breached and previously aggregated nuclei disaggregate. During this process heterochromatin in the mitonucleons undergoes changes usually ascribed to cells undergoing programmed cell death such as pyknosis and DNA fragmentation (Fleming, 2016b). The cells do not die, instead chromatin filaments appear to coalesce into a chromatin mass that gives rise to dome-filling nuclei by amitosis during the final three to four hours of the 20 hour differentiation (Fleming, 2016c).