Regioisomeric photochromic chromenes 1Ch-6Ch substituted with the (2,3,4,5,6-pentamethyl/phenyl)phenyl scaffold were designed to delve into stereoelectronic effects on the spectrokinetic properties of photogenerated o-quinonoid reactive intermediates. While the latter derived from 1Ch, 2Ch, 4Ch, and 5Ch were found to exhibit notable persistence, those from 3Ch and 6Ch were found to revert rapidly at room temperature to preclude visible coloration. The intermediates of 1Ch and 2Ch were found to be marginally more stable than those of 4Ch and 5Ch, respectively, attesting to the possibility of toroidal conjugation via C(ipso)-π orbitals in the former. The rapid reversion of the intermediates of 3Ch and 6Ch is attributed to unfavorable electronic repulsion between the phenyl ring of the (pentamethyl/phenyl)phenyl scaffold and one of the lone-pairs of the o-quinonoid oxygen. Thus, the regioisomerically substituted photochromic chromenes are shown to permit control of the reversion, very rapidly as well as slowly, of the colored o-quinonoid intermediates through operation of stereoelectronic effects differently.