2017
DOI: 10.1038/s41598-017-10702-6
|View full text |Cite
|
Sign up to set email alerts
|

Unveiling CO2 heterogeneous freezing plumes during champagne cork popping

Abstract: Cork popping from clear transparent bottles of champagne stored at different temperatures (namely, 6, 12, and 20 °C) was filmed through high-speed video imaging in the visible light spectrum. During the cork popping process, a plume mainly composed of gaseous CO2 with traces of water vapour freely expands out of the bottleneck through ambient air. Most interestingly, for the bottles stored at 20 °C, the characteristic grey-white cloud of fog classically observed above the bottlenecks of champagne stored at low… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
36
1
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
5
2

Relationship

2
5

Authors

Journals

citations
Cited by 20 publications
(41 citation statements)
references
References 28 publications
2
36
1
1
Order By: Relevance
“…As already unveiled in a previous study, for the bottle stored at 20°C, a blue plume appears about 250 μs after the cork popping process and develops above the bottleneck for several milliseconds until it progressively vanishes. It was emphasized that blue haze is the signature of a partial and transient heterogeneous freezing of gas-phase CO 2 on ice water clusters homogeneously nucleated in the bottlenecks ( 11 ). Blue haze is indeed typical of the Rayleigh scattering of light by clusters much smaller than the wavelengths of ambient light ranging from 0.4 to 0.8 μm.…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations
“…As already unveiled in a previous study, for the bottle stored at 20°C, a blue plume appears about 250 μs after the cork popping process and develops above the bottleneck for several milliseconds until it progressively vanishes. It was emphasized that blue haze is the signature of a partial and transient heterogeneous freezing of gas-phase CO 2 on ice water clusters homogeneously nucleated in the bottlenecks ( 11 ). Blue haze is indeed typical of the Rayleigh scattering of light by clusters much smaller than the wavelengths of ambient light ranging from 0.4 to 0.8 μm.…”
Section: Resultsmentioning
confidence: 99%
“…Nevertheless, with homogeneous nucleation rates close to zero for dry ice CO 2 clusters, the freezing of gas-phase CO 2 through homogeneous nucleation remains thermodynamically impossible for the bottles stored at 20° and 30°C (despite saturation ratios substantially higher than 1 for gas-phase CO 2 after adiabatic expansion). In a previous article, the following scenario was proposed to account for the formation of a blue haze as observed above the bottlenecks of a 20°C cork popping bottle ( 11 ). After adiabatic expansion of the CO 2 /H 2 O gas mixture, clusters of ice water appear in the bottlenecks through homogeneous nucleation (given their very high rate of homogeneous nucleation).…”
Section: Resultsmentioning
confidence: 99%
See 2 more Smart Citations
“…La constante de Henry du CO 2 y est d'environ 1,5 g/l/bar à 20 °C, alors qu'elle n'est que de l'ordre de 20 mg/l/bar pour l'oxygène, par exemple. Or, la dépendance exponentielle en température de la constante de Henry d'un gaz en solution aqueuse induit une très forte sensibilité de sa solubilité avec la température (plus la Par application de la loi de Henry et de celle des gaz parfaits, on peut calculer la pression de gaz carbonique qui règne dans une bouteille en fonction de sa température T. En tenant compte de l'étape qui consiste à retirer le dépôt de levures mortes de la bouteille sous l'effet de la pression après la prise de mousse, puis à reboucher immédiatement ladite bouteille avec un bouchon en liège, la pression de gaz carbonique qui règne dans une bouteille de champagne prête à être dégustée s'exprime comme suit [4] : 2 (2), où n T est le nombre de moles de CO 2 piégées dans la bouteille en fin de fermentation, V L est le volume de champagne, V G est le volume du ciel gazeux dans le col de bouteille et R est la constante des gaz parfaits.…”
Section: La Pression Dans Une Bouteille Augmente Avec Sa Températureunclassified