Machine learning methods have been recognized as rapid methods for satellite-based aerosol retrievals but have not been widely applied in geostationary satellites. In this study, we developed a wide and deep learning model to retrieve the aerosol optical depth (AOD) using Himawari-8. Compared to traditional deep learning methods, we embedded a “wide” modeling component and tested the proposed model across China using independent training (2016–2018) and test (2019) datasets. The results showed that the “wide” model improves the accuracy and enhances model interpretability. The estimates exhibited better accuracy (R2 = 0.81, root-mean-square errors (RMSEs) = 0.19, and within the estimated error (EE) = 63%) than those of the deep-only models (R2 = 0.78, RMSE = 0.21, within the EE = 58%). In comparison with extreme gradient boosting (XGBoost) and Himawari-8 V2.1 AOD products, there were also significant improvements. In addition to higher accuracy, the interpretability of the proposed model was superior to that of the deep-only model. Compared with other seasons, higher contributions of spring to the AOD concentrations were interpreted. Based on the application of the wide and deep learning model, the near-real-time variation of the AOD over China could be captured with an ultrafine temporal resolution.