The unbiased, naked structures of tartaric acid, one of the most important organic compounds existing in nature and a candidate to be present in the interstellar medium, has been revealed in this work for the first time. Solid samples of its naturally occurring (R,R) enantiomer have been vaporized by laser ablation, expanded in a supersonic jet, and characterized by Fourier transform microwave spectroscopy. In the isolation conditions of the jet, we have discovered up to five different structures stabilized by intramolecular hydrogen-bond networks dominated by O À H•••O = C and O À H•••O motifs extended along the entire molecule. These five forms, two with an extended (trans) disposition of the carbon chain and three with a bent (gauche) disposition, can serve as a basis to represent the shape of tartaric acid. This work also reports the first set of spectroscopy data that can be used to detect tartaric acid in the interstellar medium.