Objective: To study the roles of Nrf2 in acute lung injury (ALI) pathogenesis by investigating the effects of Nrf2 on regulating oxidative stress damage in TNF-α-induced type II alveolar epithelial cells (T2AECs).Methods: T2AECs were transfected with Nrf2 siRNA and overexpression vectors for six hours before being induced by TNF-α for 24 hours. Subsequently, levels of interleukins (IL-6 and IL-8), reactive oxygen species (ROS), malondialdehyde (MDA), total antioxidation capability (T-AOC), Nrf2, NOX1 and NF-kB were measured. Additionally, potential Nrf2 binding site in NOX1 promoter was predicted by AliBaba2.1 and two recombinant vectors, namely “pGL3-NOX1-1500” and “pGL3-NOX1-1489, were constructed by inserting the sequence of NOX1 promoter in full-length and that in the absence of Nrf2 binding site to pGL3 basic vector. T2AECs were transfected with these vectors prior to TNF-α induction and the luciferase activity was measured.Results: Levels of IL-6, IL-8, ROS and MDA were increased (P<0.05) while T-AOC was decreased in TNF-α-induced A549 cells after the transfection of Nrf2 siRNA vector (P<0.05). In contrast, concentrations of IL-6, IL-8, ROS and MDA were decreased (P<0.05) whereas T-AOC was increased after the transfection of Nrf2 overexpression vector (P<0.05). NOX1 promoter possesses one Nrf2 binding site. Cells transfected by “pGL3-NOX1-1500” vector had the highest luciferase activity, followed by cells transfected by “pGL3-NOX1-1489” vector and the control cells (P<0.05).Conclusion: Nrf2 modulates NOX1 expression via binding to its promoter, by which against TNF-α-induced oxidative stress damage in T2AECs. Thus, Nrf2 might be a therapeutic target for ALI.