Maf1 is an essential and specific mediator of transcriptional repression in the RNA polymerase (pol) III system. Maf1-dependent repression occurs in response to a wide range of conditions, suggesting that the protein itself is targeted by the major nutritional and stress-signaling pathways. We show that Maf1 is a substrate for cAMP-dependent PKA in vitro and is differentially phosphorylated on PKA sites in vivo under normal versus repressing conditions. PKA activity negatively regulates Maf1 function because strains with unregulated high PKA activity block repression of pol III transcription in vivo, and strains lacking all PKA activity are hyperrepressible. Nuclear accumulation of Maf1 is required for transcriptional repression and is regulated by two nuclear localization sequences in the protein. An analysis of PKA phosphosite mutants shows that the localization of Maf1 is affected via the N-terminal nuclear localization sequence. In particular, mutations that prevent phosphorylation at PKA consensus sites promote nuclear accumulation of Maf1 without inducing repression. These results indicate that negative regulation of Maf1 by PKA is achieved by inhibiting its nuclear import and suggest that a PKA-independent activation step is required for nuclear Maf1 to function in the repression of pol III transcription. Finally, we report a previously undescribed phenotype for Maf1 in tRNA genemediated silencing of nearby RNA pol II transcription.nuclear import ͉ phosphorylation ͉ tRNA biosynthesis T he action of all three nuclear RNA polymerases (pols) in the synthesis of rRNAs, ribosomal protein mRNAs, and tRNAs is coordinately regulated to control ribosome biogenesis and cell growth in response to nutrients and many other conditions (1). In Saccharomyces cerevisiae, Maf1 has been identified as an absolute and specific effector of repression in the pol III system (2). The diversity of conditions that signal repression, combined with the essential role of Maf1 in this process, suggests that the Maf1 protein is targeted by multiple signaling pathways.Genomewide localization of the pol III transcription apparatus has shown that nutrient deprivation and entry into stationary phase causes a significant decrease in polymerase occupancy on pol III genes (3, 4). This change is Maf1-dependent and is presumably a consequence of the direct interaction of Maf1 with the polymerase (5, 6). Consistent with this view, an in vitro system that recapitulates Maf1-dependent repression identified two steps that are inhibited as follows: polymerase recruitment to existing TFIIIB-DNA complexes and de novo assembly of the initiation factor TFIIIB onto DNA (5). In the latter step, Maf1 is thought to target the activity of TFIIIB via a direct interaction with one of its subunits, Brf1 (2, 5). However, the mechanism by which Maf1 inhibits TFIIIB-DNA assembly and transcription is not yet known.Maf1 is a phylogenetically conserved and structurally novel protein that lacks homology to any motifs of known function (6). However, three conserved doma...