2018
DOI: 10.1016/j.optmat.2018.05.072
|View full text |Cite
|
Sign up to set email alerts
|

Upconversion solar cell measurements under real sunlight

Abstract: The main losses in solar cells result from the incomplete utilization of the solar spectrum. Via the addition of an upconverting layer to the rear side of a solar cell, the otherwise-unused subbandgap photons can be utilized. In this paper, we demonstrate an efficiency enhancement of a silicon solar cell under real sunlight due to upconversion of sub-bandgap photons. Sunlight was concentrated geometrically with a lens with a factor of up to 50 suns onto upconverter silicon solar cell devices. The upconverter s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

1
41
0
4

Year Published

2019
2019
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 63 publications
(46 citation statements)
references
References 31 publications
1
41
0
4
Order By: Relevance
“…[12][13][14] In the field of photovoltaics they can provide the additional boost to overcome the Shockley-Queisser limit. 15,16 Aside from the technological relevance of nanomaterials based on these elements, as scientists we are also genuinely mesmerized by their luminescence: the complex physical processes governing it are source of continue wonder, pushing us to a pursue their deeper understanding.…”
Section: Introductionmentioning
confidence: 99%
“…[12][13][14] In the field of photovoltaics they can provide the additional boost to overcome the Shockley-Queisser limit. 15,16 Aside from the technological relevance of nanomaterials based on these elements, as scientists we are also genuinely mesmerized by their luminescence: the complex physical processes governing it are source of continue wonder, pushing us to a pursue their deeper understanding.…”
Section: Introductionmentioning
confidence: 99%
“…Высокий выход свечения при 990 nm позволяет пытаться применить эти материалы для повышения эффективности кремниевых солнечных батарей. Такие исследования для материалов, содержащих Er 3+ , интенсивно проводятся последние годы [1,9,14]. Зависимость прироста тока j в кремниевом солнечном элементе от интенсивности C инфракрасного излучения солнца, конвертированного в излучение ∼ 980 nm, описывается выражением j = aC b , где коэффициент b равен 1.55 для β−NaYF 4 [9] и 1.59 для Gd 2 O 2 S [14].…”
Section: методика экспериментаunclassified
“…Помимо видимых полос свечения, возбуждение лазерным излучением 1.5 µm приводит к появлению свечения в области 990 nm (CdF 2 −Er [6], CaF 2 −Er [8]), интенсивность которого превышает интенсивности видимых полос. По этой причине некоторые фторидные материалы предлагались для повышения выхода кремниевых фотопреобразователей [1,8,9].…”
unclassified
“…Materials must be selected carefully to minimize mismatch between the solar spectrum and the spectral absorption of solar cell (spectral losses). One approach to expand the usable range of light involves the application of a conversion layer, such as down conversion (DC) [18,19], down shifting (DS) [20,21], up conversion (UC) [22,23], and multi-junction tandem structures [24,25]. DC involves converting an incident high-energy photon (UV-blue wavelengths) into two or more photons of lower energy (within visible wavelengths).…”
Section: Introductionmentioning
confidence: 99%