Techniques to improve the graphitization of lignin, the second most abundant natural polymer, are in great demand as a viable means to obtain costeffective and less energy-intensive graphite for various applications. In this work, we report the effects of two-dimensional nanomaterials, graphene oxide (GO) and its derivative, reduced graphene oxide (RGO), used as templating agents for the graphitization of alkali-derived lignin. The hypothesis is that during heat temperature treatment, the GO additives act as a template that allows the lignin matrix to align on its basal planes through π−π interactions. In addition, possible chemical bonding between the GO additives and lignin may extend the two planar frameworks. Results from X-ray diffraction and Raman spectroscopy showed improved graphitic quality in the lignin-GO and lignin-RGO samples compared to pure lignin at 2500 °C. Transmission electron microscopy images and selected area electron diffraction patterns also revealed ordered nanostructures and defined polycrystalline patterns in the lignin-GO and lignin-RGO samples. This work presents a method to synthesize graphitic-like materials using carbon-based templates with the advantage that there is no need for further purification of the final material as in the case of transition metal catalysts.