Current antifungal agents cover a majority of opportunistic fungal pathogens; however, breakthrough invasive fungal infections continue to occur and increasingly involve relatively uncommon yeasts and molds, which often exhibit decreased susceptibility. APX001A (manogepix) is a first-in-class small-molecule inhibitor of the conserved fungal Gwt1 protein. This enzyme is required for acylation of inositol during glycosylphosphatidylinositol anchor biosynthesis. APX001A is active against the major fungal pathogens, i.e., Candida (except Candida krusei), Aspergillus, and hardto-treat molds, including Fusarium and Scedosporium. In this study, we tested APX001A and comparators against 1,706 contemporary clinical fungal isolates collected in 2017 from 68 medical centers in North America (37.3%), Europe (43.4%), the Asia-Pacific region (12.7%), or Latin America (6.6%). Among the isolates tested, 78.5% were Candida spp., 3.9% were non-Candida yeasts, including 30 (1.8%) Cryptococcus neoformans var. grubii isolates, 14.7% were Aspergillus spp., and 2.9% were other molds. All isolates were tested by CLSI reference broth microdilution. APX001A (MIC 50 , 0.008 g/ml; MIC 90 , 0.06 g/ml) was the most active agent tested against Candida sp. isolates; corresponding anidulafungin, micafungin, and fluconazole MIC 90 values were 16-to 64-fold higher. Similarly, APX001A (MIC 50 , 0.25 g/ml; MIC 90 , 0.5 g/ml) was Ն8-fold more active than anidulafungin, micafungin, and fluconazole against C. neoformans var. grubii. Against Aspergillus spp., AXP001A (50% minimal effective concentration [MEC 50 ], 0.015 g/ml; MEC 90 , 0.03 g/ml) was comparable in activity to anidulafungin and micafungin. Aspergillus isolates (Ͼ98%) exhibited a wild-type phenotype for the mold-active triazoles (itraconazole, posaconazole, and voriconazole). APX001A was highly active against uncommon species of Candida, non-Candida yeasts, and rare molds, including 11 isolates of Scedosporium spp. (MEC values, 0.015 to 0.06 g/ml). APX001A demonstrated potent in vitro activity against recent fungal isolates, including echinocandin-and fluconazole-resistant strains. The extended spectrum of APX001A was also notable for its potency against many less common but antifungal-resistant strains. Further studies are in progress to evaluate the clinical utility of the methyl phosphate prodrug, APX001, in difficult-to-treat resistant fungal infections.