Sodium–glucose cotransporter 2 (SGLT-2) inhibitors are highly selective, effective, and generally well-tolerated antihyperglycemic agents targeting the SGLT-2 transmembrane protein. Despite being primarily registered for diabetes treatment, due to their cardiorenal protective properties, SGLT-2 inhibitors caused a paradigm shift in the treatment of other diseases on the cardiorenal spectrum, becoming a fundamental part of heart failure and chronic kidney disease management. With their rapidly increasing use, there are also increased reports of a rare, often under-recognised and potentially deadly side effect, SGLT-2-inhibitor-induced euglycemic diabetic ketoacidosis (EDKA). The primary pathophysiological process behind its multifactorial aetiology comprises glucosuria and osmotic diuresis, which produce a significant carbohydrate deficit, leading to an increase in the glucagon–insulin ratio, thus resulting in accelerated ketogenesis. Although EDKA has a similar clinical presentation as diabetic ketoacidosis (DKA), the absence of the high glucose levels typically expected for DKA and the presence of urine ketone reabsorption contribute to a significant delay in its recognition and timely diagnosis. Given the broad use of SGLT-2 inhibitors, increased awareness, early recognition, and prompt identification of precipitating factors are essential. In this narrative review, we comprehensively explore the pathophysiological mechanisms of SGLT-2-inhibitor-induced EDKA, analyse its clinical manifestation, and identify the most common triggers for its development. We also discuss EDKA management and preventive strategies.