This study aimed to examine whether the polygenic profile of ACE ID and ACTN3 R577X polymorphisms is associated with muscle power performance in Korean athletes. For this study, 106 top-class power athletes (top-class group), 158 elite power athletes (elite-class group), and 676 healthy adults (control) aged 18-39 yrs were recruited and their genotypes were analyzed. The top-class group showed higher frequencies of the II genotype and I allele in ACE, as well as higher frequencies of the RR genotype and R allele in ACTN3 (top-class vs. control: 41.4% vs. 32.1% for II genotype, 67.1% vs. 57.7% for I allele, p<0.05; 42.3% vs. 29.0% for RR genotype, 65.3% vs. 54.8% for I allele, p<0.05). In the polygenic profile, the top-class group had significantly higher frequencies of combined-II/ID+RR/RX genotype than the control group (top-class vs. control: 82.9% vs. 66.7% for II/ID+RR/RX, p<0.05), and there was even a sharp increase in total genotype score (TGS) in this group compared to the elite-class and control groups (66±0.9 vs. 58±1.9 vs. 56±2.3, p<0.05). The combined-II/ID+RR/RX genotype showed the possibility of succussion in the top-class muscle power performance with an odds ratio of 2.3 (CI:1.4-4.1, p<0.05). These results suggested that ACE and ACTN3 need to interact with each other to affect muscle-power performance in an additive form. Furthermore, the polygenic profile of ACE and ACTN3 can predict muscle performance with high success in a homogeneous dominant combined genotype (II/ID+RR/RX). A further study could identify and combine other genes into ACE and ACTN3 for muscle strength.