e Infection by human cytomegalovirus (CMV) elicits a strong humoral immune response and robust anti-CMV antibody production. Diagnosis of virus infection can be carried out by using a variety of serological assays; however, quantification of serum antibodies against CMV may not present an accurate measure of a patient's ability to control a virus infection. CMV strains that express green fluorescent protein (GFP) fusion proteins can be used as screening tools for evaluating characteristics of CMV infection in vitro. In this study, we employed a CMV virus strain, AD169, that ectopically expresses a yellow fluorescent protein (YFP) fused to the immediate-early 2 (IE2) protein product (AD169 IE2-YFP ) to quantify a CMV infection in human cells. We created a high-throughput cell-based assay that requires minimal amounts of material and provides a platform for rapid analysis of the initial phase of virus infection, including virus attachment, fusion, and immediate-early viral gene expression. The AD169 IE2-YFP cell infection system was utilized to develop a neutralization assay with a monoclonal antibody against the viral surface glycoprotein gH. The high-throughput assay was extended to measure the neutralization capacity of serum from CMV-positive subjects. These findings describe a sensitive and specific assay for the quantification of a key immunological response that plays a role in limiting CMV dissemination and transmission. Collectively, we have demonstrated that a robust high-throughput infection assay can analyze the early steps of the CMV life cycle and quantify the potency of biological reagents to attenuate a virus infection.T he coevolution of human herpesviruses with their hosts over the past millions of years has led to the development of complex strategies of immune evasion that allow persistent viral infection despite the presence of an active immune response (1). A comprehensive understanding of cytomegalovirus (CMV) infection is essential to delineate the molecular and cellular interactions necessary for priming a targeted humoral immune response and how a pathogen may coopt these processes to establish a persistent and lifelong infection (2). Furthermore, a more complete comprehension of CMV entry, replication, and immune evasion is paramount in developing strategies to diagnose and alleviate CMV disease in immunocompromised patients such as transplant recipients, AIDS patients, and neonates.Analysis of viral protein expression during CMV infection can be useful in studying viral entry, cellular manipulation, and egress. The replication cycle of CMV is temporally controlled and regulated by different segments of the viral genome. The replicative cycle is divided into immediate-early (IE), early (E), and late (L) phases of replication. CMV IE proteins are produced first and appear within 6 h postinfection (hpi). IE proteins are potent transactivators that stimulate the transcription of E genes (3, 4). IE1 and IE2 are the best-characterized IE gene products and are essential for viral replication a...