Many real world-problems can be modelled as mathematical problems with nonnegative magnitudes, and, therefore, the solutions of these problems are meaningful only if their values are nonnegative. Examples of these nonnegative magnitudes are the concentration of components in a chemical compound, frequencies in an audio signal, pixel intensities on an image, etc. Some of these problems can be modelled to an overdetermined system of linear equations, that is, a system of equations with more equations than unknowns. When the solution of this system of equations should be constrained to nonnegative values, a new problem arises. This problem is called the Nonnegative Least Squares (NNLS) problem, and its solution has multiple applications in science and engineering, especially for solving optimization problems with nonnegative restrictions. Another important nonnegativity constrained decomposition is the Nonnegative Matrix Factorization (NMF). The NMF is a very popular tool in many fields such as document clustering, data mining, machine learning, image analysis, chemical analysis, and audio source separation. This factorization tries to approximate a nonnegative data matrix with the product of two smaller nonnegative matrices. Furthermore, this matrix decomposition usually creates parts based representations of the data in the original matrix. The algorithms that are designed to compute the solution of these two nonnegative problems have a high computational cost. Due to this high cost, these decompositions can benefit from the extra performance obtained using High Performance Computing (HPC) techniques. Nowadays, there are very powerful computational systems that offer high performance and can be used to solve extremely complex problems in science and engineering.