The seismic retrofit of the existing building heritage represents an urgent issue to be faced and innovative solutions which allow to overcome renovation barriers are needed. In this scenario, pin-supported (PS) walls represent an eligible solution, enabling linearization of the deformation of the frame along its height and inhibiting soft storey collapse mechanisms. The PS wall can be connected to the existing building from outside, thereby avoiding disruption to occupants or their relocation, which are acknowledged as the main barriers to the renovation nowadays. Suitability of PS wall solutions in the seismic retrofit of the existing building stock has been investigated herein, particularly in the case of existing reinforced concrete (RC) buildings, preliminarily focusing on 2D RC frames. The paper shows the weaknesses and strengths of the PS wall solution in relation to the specific features of the considered buildings. An analytical closed-form formulation is proposed and applied as a preliminary tool to evaluate the load distribution in the existing frame and in the PS wall after the retrofit considering the first mode of vibration of the retrofitted system. The results show that, in some conditions, the application of PS walls may be detrimental to the structural response. Along with the evaluation of the effectiveness of the retrofit solution, the proposed formulation allows a preliminary design of the retrofit system. Finally, a series of finite element model analyses have been carried out for validation purposes showing a good agreement between the proposed analytical formulation and the numerical results.