In this paper, a generalized version of dynamic ASEP is introduced, and it is shown that the process has a Markov duality property with the same process on the reversed lattice. The duality functions are multivariate q-Racah polynomials, and the corresponding orthogonality measure is the reversible measure of the process. By taking limits in the generator of dynamic ASEP, its reversible measure, and the duality functions, we obtain orthogonal and triangular dualities for several other interacting particle systems. In this sense, the duality of dynamic ASEP sits on top of a hierarchy of many dualities.