2020
DOI: 10.1016/j.dss.2020.113320
|View full text |Cite
|
Sign up to set email alerts
|

Uplift Modeling for preventing student dropout in higher education

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
48
0
3

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 68 publications
(51 citation statements)
references
References 44 publications
0
48
0
3
Order By: Relevance
“…Dropout is a concern for higher education institutions because of the negative impact on the well-being of students and the community. The early withdrawal of students from degree programs has, on the one hand, monetary costs to educational institutions (i.e., loss of cash inflows) and, on the other hand, broad social costs [2]. Thus, understanding the causes of higher education dropout is essential to eliminate or at least minimise them as much as possible.…”
Section: Introductionmentioning
confidence: 99%
“…Dropout is a concern for higher education institutions because of the negative impact on the well-being of students and the community. The early withdrawal of students from degree programs has, on the one hand, monetary costs to educational institutions (i.e., loss of cash inflows) and, on the other hand, broad social costs [2]. Thus, understanding the causes of higher education dropout is essential to eliminate or at least minimise them as much as possible.…”
Section: Introductionmentioning
confidence: 99%
“…Por otra parte Himmel (2012), divide los enfoques del análisis de la deserción y retención en cinco grandes categorías, dependiendo del énfasis que otorgan a las variables explicativas, ya sea individuales, institucionales o del medio familiar, de la siguiente forma: psicológicos, económicos, sociológicos, organizacionales y de interacciones. Referente a los modelos de clasificación para la deserción en (Olaya et al, 2020), presentan un modelo Uplift en el cual se muestran los resultados y las virtudes del modelado de mejora en la adaptación de los esfuerzos de retención en la educación superior sobre los enfoques convencionales de modelado predictivo. Viloria et al, (2019), presentan un clasificador bayesiano aplicado a la deserción en la educación superior, la investigación propone un nuevo clasificador bayesiano simple (SBND) con Márkov de la variable de clase a una estructura de red donde se utiliza la herramienta "Weka" para realizar la clasificación y el modelo propuesto se compara estadísticamente con otros clasificadores bayesianos.…”
Section: Estado Del Arteunclassified
“…In [19], the students' attendance, also in the first semester, is analysed to predict dropout risk. In [20], the authors applies the uplift modeling framework to the problem of student dropout prevention and estimating the effects of actions such as tutorial with the objective to improve the design of retention programs. In [21], well-known data mining classification algorithms, predicts students' overall academic performance based on the information available at the end of the first year of the students' academic path at the University of Porto (Portugal).…”
Section: B Related Workmentioning
confidence: 99%