2023
DOI: 10.1016/j.jde.2023.01.036
|View full text |Cite
|
Sign up to set email alerts
|

Upper and lower H˙m estimates for solutions to parabolic equations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 39 publications
0
4
0
Order By: Relevance
“…Given boldf(·,t)L1(false(0,false),Lσ2false(Rnfalse))$ \hspace{-0.42677pt}\mbox{\boldmath $f$}(\cdot ,t) \hspace{-0.42677pt} \in \hspace{-0.56917pt} L^{1}((0,\infty ), L^{2}_{\sigma }(\mathbb {R}^{n}))$ satisfying (2.2) and, in addition, false∥0.85355ptboldf(·,t)0.56917ptfalse∥trueḢm-0.16em=Ofalse(1+tfalse)0.28em-0.16emα0.28em-0.16em0.222222em-0.16em10.222222em-0.16em0.28em-0.16emm/2$ \Vert \hspace{0.85355pt} \mbox{\boldmath $f$}(\cdot ,t) \hspace{0.56917pt} \Vert _{\dot{H}^{m}} \!= O(1 + t)^{-\;\!\alpha \;\!-\:\!1\:\!-\;\! m/2}$ for some m0$ m \geqslant 0$, then it follows from Wiegner's theorems above and [6, Theorem 1.1] that, for t1$ t \gg 1$: D0.1424ptboldu0.1424pt(·,t)0.56917ptfalse∥L2(double-struckRn)=0.28436ptO0.28436pt(tα/2)$ \Vert \hspace{0.1424pt} D^{\ell }\hspace{0.1424pt} \mbox{\boldmath $u$}\hspace{0.1424pt}(\cdot ,t)\hspace{0.56917pt} \Vert _{L^{2}(\mathbb {R}^{n})} \hspace{-0.85355pt}= \hspace{0.28436pt}O\hspace{0.28436pt}(\hspace{0.28436pt} t^{\:\!-\;\!\alpha \hspace{1.42271pt}-\hspace{1.42271pt} \ell \hspace{0.28436pt}/2}\hspace{0.28436pt}) \hspace{-0.28436pt}$ and …”
Section: Inverse Wiegner's Theorem For the Navier–stokes Equationsmentioning
confidence: 99%
See 2 more Smart Citations
“…Given boldf(·,t)L1(false(0,false),Lσ2false(Rnfalse))$ \hspace{-0.42677pt}\mbox{\boldmath $f$}(\cdot ,t) \hspace{-0.42677pt} \in \hspace{-0.56917pt} L^{1}((0,\infty ), L^{2}_{\sigma }(\mathbb {R}^{n}))$ satisfying (2.2) and, in addition, false∥0.85355ptboldf(·,t)0.56917ptfalse∥trueḢm-0.16em=Ofalse(1+tfalse)0.28em-0.16emα0.28em-0.16em0.222222em-0.16em10.222222em-0.16em0.28em-0.16emm/2$ \Vert \hspace{0.85355pt} \mbox{\boldmath $f$}(\cdot ,t) \hspace{0.56917pt} \Vert _{\dot{H}^{m}} \!= O(1 + t)^{-\;\!\alpha \;\!-\:\!1\:\!-\;\! m/2}$ for some m0$ m \geqslant 0$, then it follows from Wiegner's theorems above and [6, Theorem 1.1] that, for t1$ t \gg 1$: D0.1424ptboldu0.1424pt(·,t)0.56917ptfalse∥L2(double-struckRn)=0.28436ptO0.28436pt(tα/2)$ \Vert \hspace{0.1424pt} D^{\ell }\hspace{0.1424pt} \mbox{\boldmath $u$}\hspace{0.1424pt}(\cdot ,t)\hspace{0.56917pt} \Vert _{L^{2}(\mathbb {R}^{n})} \hspace{-0.85355pt}= \hspace{0.28436pt}O\hspace{0.28436pt}(\hspace{0.28436pt} t^{\:\!-\;\!\alpha \hspace{1.42271pt}-\hspace{1.42271pt} \ell \hspace{0.28436pt}/2}\hspace{0.28436pt}) \hspace{-0.28436pt}$ and …”
Section: Inverse Wiegner's Theorem For the Navier–stokes Equationsmentioning
confidence: 99%
“…Remark Under the same conditions given in Remark 2.3, but assuming more strongly that false∥0.28436ptboldf(·,t)0.56917ptfalse∥L2(double-struckRn)=0.28436pto0.56917ptfalse(1+tfalse)0.28em-0.16emα0.28em-0.16em0.222222em-0.16em1$ \Vert \hspace{0.28436pt} \mbox{\boldmath $f$}(\cdot ,t) \hspace{0.56917pt}\Vert _{L^{2}(\mathbb {R}^{n})} \hspace{-1.13791pt}=\hspace{0.28436pt} o\hspace{0.56917pt}(1 + t)^{-\;\!\alpha \;\!-\:\!1} \hspace{-1.42271pt}$, it follows from Wiegner's theorems and [6, Theorem 1.5] that lim inft0.16em0.16em1.42271ptt0.222222em-0.16emα1.42271pt+1.42271pt0.28436pt/20.28em-0.16emfalse∥0.56917ptDboldu0.28436pt(·,t)0.56917ptfalse∥1falseL2false(Rnfalse)badbreak>1.42271pt0$$\begin{equation*} \nonumber \liminf _{t\,\rightarrow \,\infty } \hspace{1.42271pt} t^{\:\!\alpha \hspace{1.42271pt}+\hspace{1.42271pt} \ell \hspace{0.28436pt}/2} \;\! \Vert \hspace{0.56917pt}D^{\ell } \mbox{\boldmath $u$}\hspace{0.28436pt}(\cdot ,t) \hspace{0.56917pt} \Vert _{\mbox{}_{\scriptstyle L^{2}(\mathbb {R}^{n})}} \hspace{-0.56917pt}>\hspace{1.42271pt}0 \end{equation*}$$for all 0.85355pt0m+1$\hspace{0.85355pt} 0 \hspace{-0.28436pt}\leqslant \hspace{-0.42677pt} \ell \hspace{-0.56917pt}\leqslant \hspace{-0.42677pt} m + 1$, provided that one has λ(α)0.28436ptlim inft0.16em0.16em0.85355ptt0.222222em-0.16emα0.56917ptfalse∥1.42271ptboldu(...…”
Section: Inverse Wiegner's Theorem For the Navier–stokes Equationsmentioning
confidence: 99%
See 1 more Smart Citation
“…Equations as (1.1) that combines effects of the advective and diffusive terms have been widely studied due to their applications in several areas [2,3,5,8,9,10,12,14,15].…”
Section: Introductionmentioning
confidence: 99%