We introduce a new probabilistic model of the primes consisting of integers that survive the sieving process when a random residue class is selected for every prime modulus below a specific bound. From a rigorous analysis of this model, we obtain heuristic upper and lower bounds for the size of the largest prime gap in the interval [1, x]. Our results are stated in terms of the extremal bounds in the interval sieve problem. The same methods also allow us to rigorously relate the validity of the Hardy-Littlewood conjectures for an arbitrary set (such as the actual primes) to lower bounds for the largest gaps within that set.