We present the first Organ-on-Chip equipped with a low-impedance Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) MicroElectrode Array (MEA). The novel device allows simultaneous mechanical stimulation with a stretchable PDMS membrane and electrical monitoring via the PEDOT:PSS MEA of multiple in vitro cell cultures. The surface area enhancement and the morphology of the PEDOT:PSS allows an increase of the charge injection per unit area at the electrode-electrolyte interface, resulting in significantly lower electrochemical impedance of the electrodes. In particular, at 1 kHz the fabricated PEDOT-MEA electrodes show a reduction of the overall impedance up to 99.4 and 93.3 % in comparison with benchmark TiN and Pt electrodes. The superior performance of PEDOT:PSS were also confirmed via Cyclic Voltammetry measurement, in which PEDOT:PSS showed a very large capacitive current, compared with the benchmark electrodes both in the forward and the reverse scans. The obtained results confirm the effectiveness of the proposed PEDOT:PSS coating, and introduce this material in the OOC field. Moreover, the quality and morphology of the fabricated PEDOT:PSS based electrodes were assessed via SEM imaging and Raman spectroscopy. Index Terms-Organ-on-chip, microelectrode array, PEDOT:PSS, PDMS. I. INTRODUCTION O RGAN-ON-CHIPS (OOCs) are in vitro models, which replicate the minimal functional unit of an organ by combining advanced polymer chip technology with