The electronic spectra of uranyl(VI) coordinated with four equatorial halide ligands, [UO 2 X 4 ] 2− (X = F, Cl, Br and I), have been calculated at the all-electron level using the multiconfigurational CASPT2 method, with spin-orbit coupling included through the variational-perturbational method. The halide-to-uranyl charge-transfer states were taken into account in the calculation by including ligand orbitals in the active space. In order to do that, it is assumed that the charge transfer takes place from only one of the four ligands. Two models which in principle can describe this were investigated: the first one makes use of a localizing technique and the second one replaces three ligands by ab initio model potentials (AIMPs). The basis set dependence was investigated by using two different basis sets for the halides, of triple-ζ and quadruple-ζ quality. The localization procedure turned out to be strongly basis set dependent, and the most