Investigating the spatiotemporal trends and trade-off/synergy relationships among ecosystem services can provide effective support for urban planning and decision making toward sustainable development. With Nanjing city in China as a case study, this study assessed the spatiotemporal dynamics of six key ecosystem services from 2005 to 2030. Integration of Markov-cellular automata and ecosystem services models was realized to analyze the potential impacts of future urbanization on ecosystem services by simulating business-as-usual (BAU), cropland protection (CP), and ecological restoration (ER) scenarios. Furthermore, an innovative trade-off/synergy degree was developed to quantify the magnitude of the complex relationship among the multiple ecosystem services under the different scenarios. Due to the rapid expansion of built-up land, carbon storage, habitat quality, and air purification decreased 2.92%, 5.80%, and 7.91%, respectively. The CP scenario exhibited the highest crop production values, and the ER scenario was a better urban development strategy that enhanced the regulating ecosystem services at the expense of crop production. To promote urban ecosystem services and minimize trade-offs, we proposed certain future urban development strategies, including ecological corridor construction and compact development. The study could provide a scientific reference for the effective ecosystem management of Nanjing and other rapidly urbanized regions.