2023
DOI: 10.3390/ijgi12110467
|View full text |Cite
|
Sign up to set email alerts
|

Urban Road Lane Number Mining from Low-Frequency Floating Car Data Based on Deep Learning

Xiaolong Li,
Yun Zhang,
Longgang Xiang
et al.

Abstract: Lane-level road information is especially crucial now that high-precision navigation maps are in more demand. Road information may be obtained rapidly and affordably by mining floating vehicle data (FCD). A method is proposed to extract the number of lanes on urban roads by combining deep learning and low-frequency FCD. Initially, the FCD is cleaned using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering technique. Then, the FCD is split into three categories based on the typi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 22 publications
0
1
0
Order By: Relevance
“…As the cost of positioning devices decreases, most vehicles such as buses and taxis are now equipped with GNSS devices capable of recording the time, speed, and position information of vehicles. These data are commonly referred to as floating car data (FCD), offering advantages of broad coverage and real-time capabilities [19]. Leveraging abundant FCD not only facilitates the acquisition of lane information but also allows for inferring changes in road usage, such as traffic congestion, road closures, and temporary restrictions.…”
Section: Gnss-based Data-collection Methodsmentioning
confidence: 99%
“…As the cost of positioning devices decreases, most vehicles such as buses and taxis are now equipped with GNSS devices capable of recording the time, speed, and position information of vehicles. These data are commonly referred to as floating car data (FCD), offering advantages of broad coverage and real-time capabilities [19]. Leveraging abundant FCD not only facilitates the acquisition of lane information but also allows for inferring changes in road usage, such as traffic congestion, road closures, and temporary restrictions.…”
Section: Gnss-based Data-collection Methodsmentioning
confidence: 99%