Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval
Fengjie Fu,
Dianhai Wang,
Meng Sun
et al.
Abstract:Predicting short-term urban traffic flow is a fundamental and cost-effective strategy in traffic signal control systems. However, due to the interrupted, periodic, and stochastic characteristics of urban traffic flow influenced by signal control, there are still unresolved issues related to the selection of the optimal aggregation time interval and the quantifiable uncertainties in prediction. To tackle these challenges, this research introduces a method for predicting urban interrupted traffic flow, which is … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.