We designed and prepared a novel series of urea derivatives with/without sulfonyl group in their structures to investigate the impact of the sulfonyl group on the biological activity of the evaluated compounds. Antibacterial investigations indicated that derivatives 7, 8, 9, and 11 had the most antibacterial property of all the compounds examined, their minimum inhibitory concentrations (MICs) determined against B. mycoides, E. coli, and C. albicans, with compound 8 being the most active at a MIC value of 4.88 µg/mL. Anti-cancer activity has been tested against eight human cancer cell lines; A549, HCT116, PC3, A431, HePG2, HOS, PACA2 and BJ1. Compounds 7, 8 and 9 emerged IC50 values better than Doxorubicin as a reference drug. Compounds 7 and 8 showed IC50 = 44.4 and 22.4 μM respectively against PACA2 compared to Doxorubicin (IC50 = 52.1 μM). Compound 9 showed IC50 = 17.8, 12.4, and 17.6 μM against HCT116, HePG2, and HOS, respectively. qRT-PCR revealed the down-regulation of PALB2 in compounds 7 and 15 treated PACA2 cells. Also, the down-regulation of BRCA1 and BRCA2 was shown in compound 7 treated PC3 cells. As regard A549 cells, compound 8 decreased the expression level of EGFR and KRAS genes. While compounds 7 and 9 down-regulated TP53 and FASN in HCT116 cells. Molecular docking was done against Escherichia coli enoyl reductase and human Son of sevenless homolog 1 (SOS1) and the results showed the promising inhibition of the studied proteins.