Urea transporter UT-B has been proposed to be the major urea transporter in erythrocytes and kidney-descending vasa recta. The mouse UT-B cDNA was isolated and encodes a 384-amino acid urea-transporting glycoprotein expressed in kidney, spleen, brain, ureter, and urinary bladder. The mouse UT-B gene was analyzed, and UT-B knockout mice were generated by targeted gene deletion of exons 3-6. The survival and growth of UT-B knockout mice were not different from wild-type littermates. Urea permeability was 45-fold lower in erythrocytes from knockout mice than from those in wild-type mice. Daily urine output was 1.5-fold greater in UT-B-deficient mice (p < 0.01), and urine osmolality (U osm ) was lower (1532 ؎ 71 versus 2056 ؎ 83 mosM/ kgH 2 O, mean ؎ S.E., p < 0.001). After 24 h of water deprivation, U osm (in mosM/kgH 2 O) was 2403 ؎ 38 in UT-B null mice and 3438 ؎ 98 in wild-type mice (p < 0.001). Plasma urea concentration (P urea ) was 30% higher, and urine urea concentration (U urea ) was 35% lower in knockout mice than in wild-type mice, resulting in a much lower U urea /P urea ratio (61 ؎ 5 versus 124 ؎ 9, p < 0.001). Thus, the capacity to concentrate urea in the urine is more severely impaired than the capacity to concentrate other solutes. Together with data showing a disproportionate reduction in the concentration of urea compared with salt in homogenized renal inner medullas of UT-B null mice, these data define a novel "ureaselective" urinary concentrating defect in UT-B null mice. The UT-B null mice generated for these studies should also be useful in establishing the role of facilitated urea transport in extrarenal organs expressing UT-B.