BACKGROUND: The intravesical gene therapy nadofaragene firadenovec (rAd-IFNα/Syn3) was FDA approved in 2022 for non-muscle invasive bladder cancer (NMIBC) unresponsive to frontline treatment with BCG, and the first gene therapy developed for bladder cancer. This non-replicating recombinant adenovirus vector delivers a copy of the human interferon alpha-2b gene into urothelial and tumor cells, causing them to express this pleotropic cytokine with potent antitumor effects. OBJECTIVE: To provide a historical overview describing how several decades of preclinical and clinical studies investigating the role of interferon in the treatment of bladder cancer ultimately led to the development of gene therapy with nadofaragene for NMIBC. METHODS: We conducted a review of the literature using PubMed, Google Scholar, and ClinicalTrials.gov to summarize our knowledge of the evolution of interferon-based therapy in NMIBC. RESULTS: The FDA approval of this therapy represents an important landmark in urologic oncology and several decades of research dedicated to the study of interferon’s direct and indirect antitumor properties in NMIBC. The data gathered from the phase 1, 2, and 3 clinical trials continue to provide additional insights into the precise mechanisms underlying both the efficacy of and resistance to nadofaragene. CONCLUSIONS: Nadofaragene leverages the cytotoxic, anti-angiogenic, and immune-modulatory roles of interferon to effectively treat NMIBC that is resistant to BCG. Ongoing studies of resistance mechanisms and prognostic biomarkers have been promising; these will ultimately improve patient selection and allow for the modulation of factors in the tumor or immune microenvironment to further increase therapeutic response.