Septic shock is a serious systemic disease with circulatory failure and abnormal cell metabolism caused by sepsis. However, the relationship between CD3D and CD247 and septic shock remains unclear. The septic shock datasets GSE33118 and GSE142255 profiles were generated from the gene expression omnibus databases GPl570, GPl17586. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. The construction and analysis of protein–protein interaction (PPI) network, functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. Gene expression heat map was drawn. Immune infiltration analysis was performed. Comparative toxicogenomics database (CTD) analysis were performed to find the disease most related to the core gene. Targets can was used to screen miRNAs regulating the hub DEGs. 467 DEGs were identified. According to the gene ontology analysis, they were mainly enriched in the regulation of immune response, cell activation, signaling receptor activity, enzyme binding. Kyoto encyclopedia of genes and genomes analysis showed that they were mainly enriched in the TCR signaling pathway, Fc epsilon RI signaling pathway. GSEA showed that the DEGs were mainly enriched in immune response regulation, cell activation, TCR signaling pathway, Fc epsilon RI signaling pathway. Positive regulation of Fc receptor signaling pathway, PID IL12 2 pathway, immune response was observed in go enrichment items in the enrichment items of metascape. PPI networks got 5 core genes. Gene expression heat map showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were lowly expressed in the sepsis shock samples and highly expressed in the normal samples. CTD analysis showed that 5 core genes (CD247, Lck, cd3e, cd3d, ITK) were found to be associated with hemorrhage and necrosis. Low expression of cd3d, CD247 was observed in septic shock, and the lower the level of cd3d, CD247, the worse the prognosis.