Abstract. It is widely accepted that a high sodium intake triggers blood pressure rise. However, only one-third of the normotensive subjects were reported to show salt-sensitivity in their blood pressure. Many factors have been proposed as causes of salt-sensitive hypertension, but none of them provides a satisfactory explanation. We propose, on the basis of accumulated data, that the reduced activity of the kallikrein-kinin system in the kidney may provide this link. Renal kallikrein is secreted by the distal connecting tubular cells and all kallikrein-kinin system components are distributed along the collecting ducts in the distal nephron. Bradykinin generated is immediately destroyed by carboxypeptidase Y-like exopeptidase and neutral endopeptidase, both quite independent from the kininases in plasma, such as angiotensin converting enzyme. The salt-sensitivity of the blood pressure depends largely upon ethnicity and potassium intake. Interestingly, potassium and ATP-sensitive potassium (K ATP ) channel blockers accelerate renal kallikrein secretion and suppress blood pressure rises in animal hypertension models. Measurement of urinary kallikrein may become necessary in salt-sensitive normotensive and hypertensive subjects. Furthermore, pharmaceutical development of renal kallikrein releasers, such as K ATP channel blockers, and renal kininase inhibitors, such as ebelactone B, may lead to the development of novel antihypertensive drugs.