Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundHuman nephrin (hNeph) (podocyte protein) has been known to be involved in both the formation and maintenance of the slit diaphragm (SD) and also acts as a hub protein in the podocyte by modulating cell polarity, cell survival, cell adhesion, cytoskeletal organization, mechano-sensing, and SD turn-over. MethodologyIn the present investigation, we aimed to analyse the hNeph and mouse nephrin (mNeph) and their interactions with 13 proteins using the molecular docking method. The 13 selected human proteins which include matrix metalloproteinases (MMP 2 and 9), retinol-binding proteins (RBP 3 and 4), kallikrein 1 (KLK 1), uromodulin, insulin-like growth factor binding protein 7 (IGFBP7), cystatin C, podocin, beta arrestin 1, vang-like protein 2 (VANGL2), dynamin 1, and tensin-like C1 domain-containing phosphatase (TENC1) were studied on the docking analysis of hNeph and mNeph by using the HDOCK (protein-protein) docking method. In addition, the physicochemical (PC) properties of 15 proteins were performed using the ProtParam web server. ResultsIn the present investigation, five chosen human proteins, namely, IGFBP7, cystatin C, podocin, VANGL2, and TENC1, have exhibited theoretical isoelectric point (PI) values greater than 7.0. The protein-protein docking analysis has shown that hKLK and hVANGL2 exhibited the maximum docking score of -206.39 kcal/mol and -329.28 (kcal/mol) with the target proteins mNeph and hNeph, respectively. ConclusionsThus, the current finding highlights the interactions of hNeph and mNeph with 13 chosen proteins, which may help in renal disease management.
BackgroundHuman nephrin (hNeph) (podocyte protein) has been known to be involved in both the formation and maintenance of the slit diaphragm (SD) and also acts as a hub protein in the podocyte by modulating cell polarity, cell survival, cell adhesion, cytoskeletal organization, mechano-sensing, and SD turn-over. MethodologyIn the present investigation, we aimed to analyse the hNeph and mouse nephrin (mNeph) and their interactions with 13 proteins using the molecular docking method. The 13 selected human proteins which include matrix metalloproteinases (MMP 2 and 9), retinol-binding proteins (RBP 3 and 4), kallikrein 1 (KLK 1), uromodulin, insulin-like growth factor binding protein 7 (IGFBP7), cystatin C, podocin, beta arrestin 1, vang-like protein 2 (VANGL2), dynamin 1, and tensin-like C1 domain-containing phosphatase (TENC1) were studied on the docking analysis of hNeph and mNeph by using the HDOCK (protein-protein) docking method. In addition, the physicochemical (PC) properties of 15 proteins were performed using the ProtParam web server. ResultsIn the present investigation, five chosen human proteins, namely, IGFBP7, cystatin C, podocin, VANGL2, and TENC1, have exhibited theoretical isoelectric point (PI) values greater than 7.0. The protein-protein docking analysis has shown that hKLK and hVANGL2 exhibited the maximum docking score of -206.39 kcal/mol and -329.28 (kcal/mol) with the target proteins mNeph and hNeph, respectively. ConclusionsThus, the current finding highlights the interactions of hNeph and mNeph with 13 chosen proteins, which may help in renal disease management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.