“…Similar to DNN and CNN, LSTM can be implemented individually [20,[41][42][43][44][45], incorporated with traditional machine learning techniques [46,47], or combined with other DL algorithms in a hybrid model for an improved performance in detecting malicious websites [10,11,31,33,35,36]. Among the studies of LSTM-based phishing detection models, a majority of them specified the parameter settings for neural network architecture, number of epochs, and learning rate; but ignored the dropout rate and batch size [31,41,42,44,47].…”